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Abstract—Stochastic differential equations (SDE) often exhibit
large random transitions. This property, which we denote as
pathwise stiffness, causes transient bursts of stiffness which
limit the allowed step size for common fixed time step explicit
and drift-implicit integrators. Here we present a HPC-driven
method for deriving high strong order methods for stochastic
differential equations. Utilizing GPU-accelerated global op-
timization, we numerically solve a constrained optimization
problem which results stability-optimized adaptive methods
of strong order 1.5 for SDEs. The resulting explicit methods
are shown to exhibit substantially enlarged stability regions
which allows for them to solve pathwise stiff biological models
orders of magnitude more efficiently than previous methods
like SRIW1 and Euler-Maruyama. These methods are bench-
marked on a range of semi-stiff problems and demonstrate
speedups between 6x previous adaptive algorithms while show-
ing computationally infeasibility of fixed time step integrators
on some of these test equations.

1. Introduction

Stochastic differential equations (SDEs) are dynamic
equations of the form

dXt = f(t,Xt)dt+ g(t,Xt)dWt,

where Xt is a d-dimensional vector, f : Rd → Rd is the drift
coefficient, and g : Rd → Rd×m is the diffusion coefficient
which describes the amount and mixtures of the noise
process Wt which is a m-dimensional Brownian motion.
SDEs are of interest because they can exhibit behaviors
which are not found in deterministic models. For example,
an ODE model of a chemical reaction network may stay at
a constant steady state, but in the presence of randomness
the trajectories may be switching between various steady
states [1], [2], [3]. These types of models can capture crucial
features such as transitions to cancerous states [4], discover
rare cellular behaviors [5], and enhance personalized drug
metabolism predictions for precision healthcare [6].

In many cases, these unique features of stochastic mod-
els are pathwise-dependent and are thus not a property of
the evolution of the mean trajectory. However, these same

effects cause random events of high numerical stiffness,
which we denote as pathwise stiffness, which can cause
difficulties for numerical integration methods.

A minimal example of pathwise stiffness is demonstrated
in the equation

dXt = [−1000Xt (1−Xt) (2−Xt)] dt+ g(t,Xt)dWt,
(1)

where X0 = 2, t ∈ [0, 5], and with additive noise g(t,Xt) =
10 where a sample trajectory is shown in Figure 1. This
equation has two stable steady states, one at X = 0 and
another at X = 2, which the solution switches between
when the noise is sufficiently large. While near a steady state
the derivative is approximately zero making the problem
non-stiff, during these transitions the derivative of the drift
term reaches a maximum of ≈ 400. This means that in
order to be stable, explicit Stochastic Runge-Kutta (SRK)
must have a small ∆t. This display of large, transient,
and random switching behavior in a given trajectory causes
stochastic bursts of numerical stiffness, a phenomena which
we will denote pathwise stiffness. The fixed time step
Euler-Maruyama method would require dt < 4 × 10−3 to
be stable for most trajectories, thus requiring greater than
2 × 104 steps to solve this 1-dimensional SDE. In many
cases the switching behavior can be rare (due to smaller
amounts of noise) or can happen finitely many times like
in the multiplicative noise version with g(t,Xt) = 10Xt.
Yet even if these switches are only a small portion of
the total time, the stability requirement imposed by their
existence determines the possible stepsizes and thus has a
large contribution to the overall computational cost. While
implicit methods can be used to increase the stability range,
this can vastly increase the overall computational cost of
each step, especially in the case large systems of SDEs like
discretizations of stochastic reaction-diffusion equations. In
addition, implicit solvers have in practice a smaller stability
region due to requiring convergence of the quasi-Newton
solvers for the implicit steps. This problem is mitigated
in ODE software by high-quality stage predictors given by
extrapolation algorithms for good initial conditions for the
Newton steps [7]. However, there are no known algorithms
for stage predictors in the presence of large noise bursts and
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Figure 1. Example of a Pathwise Stiff Solution. Depicted is a sample
trajectory of Equation 1 solved using the SOSRI methods developed in
this manuscript with reltol = abstol = 10−2.

thus we will demonstrate that classic implicit solvers have
a form of instability. Additionally, previous literature ques-
tioned the applicability of L-stable integrators to stochastic
differential equations due to high error in the slow variables
[8]. Thus both fixed time step explicit and implicit solvers
are inadequate for efficiently handling this common class of
SDEs.

Since these features exist in the single trajectories of the
random processes, methods which attempt to account for
the presence of such bursts must do so on each individual
trajectory in order to be efficient. In previous work, the
authors have shown that by using adaptive time-stepping,
a stochastic reaction network of 19 reactants is able to
be solved with an average time step 100,000 times larger
than the value that was found necessary for stability during
the random stiff events for a high order SRK method [9].
This demonstrated that the key to solving these equations
efficiently required controlling the time steps in a pathwise
manner. However, the methods were still largely stability-
bound, meaning the chosen tolerances to solve the model
were determined by what was necessary for stability and
was far below the error necessary for the application. The
purpose of this investigation is to develop numerical meth-
ods with the ability to better handle pathwise stiffness and
allow for efficient solving of large Monte Carlo experiments
without resorting to drift-implicit methods.

We approach this problem by developing adaptive
stability-optimized SRK methods with enlarged stability
regions. This builds off of similar work for ODE integrators
which optimize the coefficients of a Butcher tableau to give
enhanced stability [10], [11], [12]. Similar to the Runge-
Kutta Chebyschev methods [7] (and the S-ROCK extension
to the stochastic case [13], [14], [15]), these methods are
designed to be efficient for equations which display stiffness
without fully committing to implicit solvers. Given the com-
plexity of the stochastic stability equations and order con-
ditions, we develop a novel and scalable mechanism for the
derivation of “optimal” Runge-Kutta methods. We use this
method to design stability-optimized methods for diagonal
noise SDEs. We show through computational experiments

that these adaptive stability-optimized SRK methods can
adequately solve transiently stiff equations without losing
efficiency in non-stiff problems. Together we test on semi-
stiff equations with 2 to 6×20×100 SDEs from biological
literature and show a speedup around 6x over the previous
adaptive SRIW1 algorithm, and demonstrate the infeasibility
of common explicit and implicit methods (Euler-Maruyama,
Runge-Kutta Milstein, Drift-Implicit Stochastic θ-Method,
and Drift-Implicit θ Runge-Kutta Milstein) found as the
basis of many SDE solver packages [16], [17], [18].

2. Adaptive Strong Order 1.0/1.5 SRK Meth-
ods for Diagonal Noise SDEs

The class of methods we wish to study are the adaptive
strong order 1.5 SRK methods for diagonal noise [9], [19].
Diagonal noise is the case where the diffusion term g is di-
agonal matrix
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and includes phenomenological noise

models like multiplicative and affine noise. The diagonal
noise methods utilize the same general form and order
conditions as the methods for scalar noise so we use their
notation for simplicity. The strong order 1.5 methods for
scalar noise are of the form
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where the Ij are the Wiktorsson approximations to the
iterated stochastic integrals [20]. The tuple of coefficients(
A(j), B(j), β(j), α

)
thus fully determines the SRK method.

These coefficients must satisfy the constraint equations de-
scribed in [9], [19] in order to receive strong order 1.5.
These methods are appended with error estimates
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and the rejection sampling with memory (RSwM) algorithm
to give it fully adaptive time-stepping [9]. Thus unlike in
the theory of ordinary differential equations [21], [22], [23],
[24], [25], the choice of coefficients for SRK methods does
not require explicitly finding an embedded method when
developing an adaptive SRK method and we will therefore
take for granted that each of the derived methods is adaptive.

3. Optimized-Stability Order 1.5 SRK Meth-
ods with Diagonal Noise

3.1. The Stability Equation for Order 1.5 SRK
Methods with Diagonal Noise

For diagonal noise, we use the mean-square defini-
tion of stability [26]. A method is mean-square stable if
limn→∞ E

(
|Xn|2

)
= 0 on the test equation

dXt = µXtdt+ σXtdWt. (8)

In matrix form we can re-write our method as given by
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. In this space,

z is the stability variable for the drift term and w is the
stability in the diffusion term. Under this scaling

(
h,
√
h
)

,
the equation becomes independent of h and thus becomes
a function S(z, w) on the coefficients of the SRK method
where mean-square stability is achieved when |S(z, w)| < 1.

3.2. An Optimization Problem for Determination
of Coefficients

We wish to determine the coefficients for the diagonal
SRK methods which optimize the stability. To do so, we
generate an optimization problem which we can numerically
solve for the coefficients. To simplify the problem, we let
z, w ∈ R. Define the function

f (z, w;N,M) =

∫ M

−M

∫ 1

−N
χS(z,w)≤1(z, w)dzdw. (13)

Notice that for N,M → ∞, f is the area of the stability
region. Thus we define the stability-optimized diagonal SRK
method as the set of coefficients which achieves

max
A(i),B(i),β(i),α

f(z, w) (14)

subject to: Order Constraints

However, we impose a few extra constraints to add ro-
bustness to the error estimator. In all cases we impose
0 < c

(0)
i , c

(1)
i < 1 . Additionally we can prescribe c(0)4 =

c
(1)
4 = 1 which we call the End-C Constraint. Lastly, we can

prescribe the ordering constraint c(j)1 < c
(j)
2 < c

(j)
3 < c

(j)
4

which we denote as the Inequality-C Constraint.
The resulting problem is a nonlinear programming prob-

lem with 44 variables and 42-48 constraint equations. The
objective function is the two-dimensional integral of a dis-
continuous function which is determined by a polynomial
of in z and w with approximately 3 million coefficients.
To numerically approximate this function, we calculated
the characteristic function on a grid with even spacing dx
using a CUDA kernel and found numerical solutions to the
optimization problem using the JuMP framework [27] with
the NLopt backend [28]. A mixed approach using many
solutions of the semi-local optimizer LN AUGLAG EQ
[29], [30] and fewer solutions from the global optimizer
GN ISRES [31] were used to approximate the optimality of
solutions. The optimization was run many times in parallel
until many results produced methods with similar optimal-
ity, indicating that we likely obtained values near the true
minimum.

The parameters N and M are the bounds on the stability
region and also represent a trade-off between the stability in
the drift and the stability in the diffusion. A method which
is optimized when M is small would be highly stable in
the case of small noise, but would not be guaranteed to
have good stability properties in the presence of large noise.
Thus these parameters are knobs for tuning the algorithms
for specific situations, and thus we solved the problem for
different combinations of N and M to determine different
algorithms for the different cases.

3.3. Resulting Approximately-Optimal Methods

The coefficients generated for approximately-optimal
methods fall into three categories. In one category we have
the drift-dominated stability methods where large N and
small M was optimized. On the other end we have the
diffusion-dominated stability methods where large M and
small N was optimized. Then we have the mixed stability
methods which used some mixed size choices for N and
M . As a baseline, we optimized the objective without
constraints on the ci to see what the “best possible method”
would be. When this was done with large N and M , the
resulting method, which we name SOSRI, has almost every
value of c satisfy the constraints, but with c(0)2 ≈ −0.04 and
c
(0)
4 ≈ 3.75. To see if we could produce methods which were
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Figure 2. SOSRI Stability Regions. The stability regions
(S(z, w) ≤ 1)for the previous and SOSRI methods are plotted in
the (z, w)-plane. (A) Euler-Maruyama. (B) SRIW1. (C) SRIW2. (D)
SOSRI. (E) SOSRI2

more diffusion-stable, we decreased N to optimize more in
w but failed to produce methods with substantially enlarged
diffusion-stability over SOSRI.

Adding only the inequality constraints on the ci and
looking for methods for drift-dominated stability, we failed
to produce methods whose ci estimators adequately covered
the interval. Some of the results did produce stability regions
similar to SOSRI but with c

(0)
i < 0.5 which indicates the

method could have problems with error estimation. When
placing the equality constraints on the edge ci, one method,
which we label SOSRI2, resulted in similar stability to
SOSRI but satisfy the ci constraints. In addition, this method
satisfies c(0)3 = c

(0)
4 = 1 and c

(1)
3 = c

(1)
4 = 1. The stability

regions for these methods is shown in Figure 2.

To look for more diffusion-stable methods, we dropped
to N = 6 to encourage the methods to expand the stability
in the w-plane. However, we could not find a method whose
stability region went substantially beyond [−2, 2] in w. This
was further decreased to N = 1 where methods still could
not go substantially beyond |2|. Thus we were not able to
obtain methods optimized for the diffusion-dominated case.
This hard barrier was hit under many different constraint
and objective setups and under thousands of optimization
runs, indicating there might be a diffusion-stability barrier
for explicit methods.

dt

Er
ro

r

Linear Convergence Tests

SOSRI
SOSRI2
1.5 Order Reference

(C)
Figure 3. Convergence results on Equation 15. The error is averaged over
1000 trajectories. Shown are the strong l2 error along the time series of
the solution. The test used a fixed time step h = 1/2−4 to h = 1/2−7.

4. Numerical Results

4.1. Convergence Tests

In order to test the efficiency and correctness of the SRI
algorithms, we used the linear test Appendix Equation 15.
Figure 3B demonstrates that the SOSRI methods achieve the
strong order 1.5 on Equation 15.

4.2. Epithelial-Mesenchymal Transition (EMT)
Model (20 Pathwise Stiff SDEs)

To test the real consequences of the enhanced stability,
we use the Epithelial-Mesenchymal Transition (EMT) model
of 20 pathwise stiff reaction equations introduced in [3],
studied as a numerical test in [9], and written in Appendix
Section B. In the previous work it was noted that t ∈ [0, 1]
was a less stiff version of this model. Thus we first tested the
speed that the methods could solve for 10,000 trajectories
with no failures due to numerical instabilities. The tolerances
were tuned for each method by factors of 2 and finding the
largest values that were stable. Since SOSRI demonstrated
that its stability is much higher than even SOSRI2, we show
the effect of tolerance changes on SOSRI as well. The results
show that at similar tolerances the SOSRI method takes
nearly 5x less time than SRIW1 (Table 1). However, there
is an upper bound on the tolerances before the adaptivity is
no longer able to help keep the method stable. For SRIW1,
this bound is much lower, causing it to run more than 15x
slower than the fastest SOSRI setup. Interestingly SOSRI2
required a higher tolerance than SRIW1 but was 3x faster
than SRIW1’s fastest setup. We note that SOSRI’s highest
relative tolerance 2−7 ≈ 7 × 10−3 is essentially requiring
4 digits of accuracy (in strong error) when considering
the conservativeness of the error estimator, which is far
beyond the accuracy necessary in many cases. Lastly, we
note that the SOSRI method is able to solve for 10,000 stable
trajectories more than 60x faster than any of the tested fixed
time step methods.

We then timed the run time to solve 10 trajectories in
the t ∈ [0, 500] case (Table 2). This time we found the
optimal tolerance in terms of powers of 10. Once again,



Algorithm Abstol Reltol Run-time (seconds) Relative Time (vs SOSRI)

SOSRI 2−7 2−4 2.62 1.0x
SOSRI 2−7 2−6 2.75 1.0x
SOSRI 2−12 2−15 8.78 3.3x
SOSRI 2−13 2−7 3.05 1.2x
SOSRI2 2−12 2−15 8.69 3.3x
SOSRI2 2−13 2−11 5.56 2.2x
SRIW1 2−13 2−7 15.16 5.8x

Euler-Maruyama 169.96 64.8x
Runge-Kutta Milstein 182.59 69.6x

Fixed Time-step SRIW1 424.30 161.7x

DISTM
(
θ = 1

2

)
8912.91 3396x

TABLE 1. SRI TIMES FOR THE THE EMT MODEL ON t ∈ [0, 1]. THE
EQUATIONS WERE SOLVED 10,000 TIMES WITH THE GIVEN

TOLERANCES TO COMPLETION AND THE ELAPSED TIME WAS
RECORDED. THE FIXED TIME STEP METHODS HAD THEIR ∆t

DETERMINED AS THE LARGEST ∆t IN INCREMENTS OF POWERS OF 2
THAT PRODUCED NO UNSTABLE TRAJECTORIES, AS SHOWN IN [9].

DISTM IS THE DRIFT-IMPLICIT STOCHASTIC θ-METHOD

Algorithm Abstol Reltol Run-time (seconds) Relative Time (vs SOSRI)

SOSRI 10−2 10−2 22.47 1.0x
SOSRI 10−4 10−4 73.62 3.3x
SOSRI 10−5 10−3 89.19 4.0x
SOSRI2 10−4 10−4 76.12 3.4x
SOSRI2 10−5 10−3 121.75 5.4x
SRIW1 10−5 10−3 147.89 6.6x

DIRKM
(
θ = 1

2

)
7378.55 328.3x

DIEM
(
θ = 1

2

)
8796.47 391.4x

TABLE 2. SRI TIMES FOR THE THE EMT MODEL ON t ∈ [0, 500].
THE EQUATIONS WERE SOLVED 10 TIMES WITH THE GIVEN

TOLERANCES TO COMPLETION AND THE ELAPSED TIME WAS
RECORDED. THE FIXED TIMESTEP METHODS HAD THEIR ∆t CHOSEN
BY INCREMENTING BY 10−5 UNTIL 10 CONSECUTIVE TRAJECTORIES

WERE STABLE. DRIFT-IMPLICIT EULER MARUYAMA (DIEM) HAD
∆t = 1

60000
AND DRIFT-IMPLICIT RUNGE-KUTTA MILSTEIN

(DIRKM) HAD ∆t = 1
50000

.

SRIW1 needed a lower tolerance than is necessary in order
to stay stable. SOSRI is able to solve the problem only
asking for around tol = 10−2, while the others require more
(especially in absolute tolerance as there is a stiff reactant
whose values travel close to zero). One interesting point to
note is that at similar tolerances both SOSRI and SOSRI2
receive similar timings and both over 6 times faster than
the fastest SRIW1 tolerance setup. Both are nearly twice
as fast as SRIW1 when matching tolerances as well. Given
the conservativeness of the error estimators generally being
around 2 orders of magnitude more precise than the local er-
ror estimate, the low tolerance solutions are accurate enough
for many phenomenological experiments and thus present a
good speedup over previous methods. The timings for Euler-
Maruyama and Runge-Kutta Milstein schemes are omitted
since the tests were unable to finish. From the results of [9]
we note that the average dt for SRIW1 on the edge of its
stability had that the smallest dt was approximately 10−11.
The stability region for fixed step-size Euler-Maruyama is
strictly smaller than SRIW1 (Figure 2) which suggests that it
would require around 5×1012 time steps (with Runge-Kutta
Milstein being similar) to solve to t = 500. Thus, given it
takes on our setup extrapolating the time given 170 seconds
for 220 steps, this projects to around 1.6× 108 seconds, or
approximately 5 years.

Algorithm Abstol Reltol Run-time (seconds) Relative Time (vs SOSRI)

SOSRI 10−1 10−2 700.76 1.0x
SOSRI2 10−3 10−3 1016.61 1.5x

Euler-Maruyama 1758.85 2.5x
SRIW1 10−5 10−3 4205.52 6.0x

TABLE 3. SRI TIMES FOR THE THE RETINOIC ACID SPDE MODEL
ON t ∈ [0, 500]. THE EQUATIONS WERE SOLVED TWICE WITH THE

GIVEN TOLERANCES TO COMPLETION AND THE ELAPSED TIME WAS
RECORDED. THE TOLERANCES WERE CHOSEN AS THE HIGHEST PAIR OF
TOLERANCES WHICH DID NOT DIVERGE (GOING UP BY POWERS OF 10).

NOTE THAT NONE OF THE CASES DID THE TWO TIMINGS VARY BY
MORE THAN 1% OF THE TOTAL RUN TIME. EULER-MARUYAMA USED

TIME STEPS OF ∆t = 1/20000 SINCE WE NOTE THAT AT ∆t = 1/10000
APPROXIMATELY HALF OF THE TRAJECTORIES (SIMULATING 10) WERE

UNSTABLE.

4.3. Retinoic Acid Stochastic Partial Differential
Equation Model (6x20x100 Semi-Stiff SDEs)

As another test we applied the methods to a method
of lines discretization of a stochastic partial differential
equation (SPDE) describing the spatial regulation of the
Zrafish hindbrain via retinoic acid signaling ( Section C)
[1]. The discretization results in a system of 6 × 20 × 100
SDEs. Starting from an initial zero state, a concentration
gradient emerges over t ∈ [0, 500]. Each of the methods
solved the problem at the highest tolerance that was stable
giving the results in Table 3. Time stepping for this problem
is heavily limited by the high diffusion constant which
results in a strict CFL condition for the 2nd order finite
difference discretization that is used (in the PDE sense),
making this problem’s stepping stability-bound for explicit
methods. Because of this stiffness in the real axis, we
found that the previous high order adaptive method SRIW1
did not perform well on this problem in comparison to
Euler-Maruyama because the drift term is expensive and the
extra function calls outweighed the slightly larger timesteps.
However, the enhanced stability of the SOSRI and SOSRI2
methods allowed for much larger time steps while keeping
the same number of f calls per step, resulting in a more
efficient solution when high accuracy is not necessary. We
note that the drift-implicit stochastic θ-method and drift im-
plicit θ Runge-Kutta Milstein methods were too inefficient
to estimate since their time steps were constrained to be near
that of the Euler-Maruyama equation due to divergence of
the Newton iterations.

5. Discussion

In this work we derived stability-optimized SRK meth-
ods for diagonal noise equations. Importantly, our deriva-
tion methods utilized heavy computational tools in order
to approximately optimize otherwise intractable equations.
This same method of derivation can easily be scaled up
to higher orders, and by incorporating the coefficients for
higher conditions, efficiency can be optimized as well by
adding the norm of the principle error coefficients to the
optimization function. The majority of the search was per-
formed using global optimizers in massive parallel using a



hand-optimized CUDA kernel for the numerical integral of
the characteristic function, replacing man-hours with core-
hours and effectively optimizing the method. The clear next
steps are to find SRI methods with minimal error estimates
and sensible stability regions for the cases in which lower
strong error matters, and similar optimizations on SRK
methods developed for small noise problems. We note that
high strong order methods were investigated because of
their better trajectory-wise convergence, allowing for a more
robust solution and error estimation since our application to
transiently pathwise stiff equations requires such properties.

The main caveat for our methods is the restrictions
on the form of noise. Further research should focus on
the expansion of this these techniques to high order non-
diagonal noise integrators. In addition, when g is non-zero
a “diagonal noise” problem over the complex plane does not
have diagonal noise (due to the mixing of real and complex
parts from complex multiplication, and reinterpretation as a
2n real system). Thus these methods are not applicable to
problems defined in the complex plane with complex Wiener
processes. Development of similar integrators for commu-
tative noise problems could allow for similar performance
benefits on such problems and is a topic for future research.

Our timings show that the current high order SRK
methods are stability-bound and that when scientific studies
are only looking for small amounts of accuracy in stochastic
simulations, most of the computational effort is lost to gener-
ating more accurate than necessary solutions in order to sat-
isfy stability constraints. For diagonal noise approximately
6x faster than the current adaptive methods (SRIW1), while
common methods like Euler-Maruyama and Drift-Implicit θ
Runge-Kutta Milstein were in many cases hundreds of times
slower or in many cases could not even finish. We have also
shown that these methods are very robust even at high toler-
ances and have a tendency to produce the correct qualitative
results on semi-stiff equations (via plots) even when the user
chosen accuracy is low. Given that the required user input
is minimal and work over a large range of stiffness, we see
these as very strong candidates for default general purpose
solvers for problem-solving environments such as MATLAB
and Julia since they can easily and efficiently produce results
which are sufficiently correct.

Appendix

1. Diagonal Noise Test Equation

dXt = αXtdt+ βXtdWt X0 =
1

2
, (15)

where α = 1
10 and β = 1

20 with true solution

Xt = X0e

(
β−α2

2

)
t+αWt . (16)

2. Epithelial-Mesenchymal Transition Model

The Epithelial-Mesenchymal Transition (EMT) model is
given by the following system of SDEs which correspond

to a chemical reaction network modeled via mass-action
kinetics with Hill functions for the feedbacks. This model
was introduced in [3].

A =
(
([TGF ] + [TGF0] (t)) /J0S

)n0S +
(
[OVOL2] /J1S

)n1S

d [S1]t

dt
= k0S + kS

(
([TGF ] + [TGF0] (t)) /J0S

)n0S

(1 + A)
(
1 + [S] /J2S

)
− kdS ([S1] − [SR]) − kdSR [SR]

d [S]

dt
= kS ([S1] − [SR]) − kdS [S]

d [miR34]

dt
= kO34 +

k34

1 + ([S] /J134)n134 + ([Z] /J234)n234

− kd34 ([miR34] − [SR]) −
(
1 − λSR

)
kdSR [SR]

d [SR]

dt
= Tk

(
KSR ([S1] − [SR]) ([miR34] − [SR]) − [SR]

)
d [Z]

dt
= k0Z + kZ

(
[S] /J1Z

)n1Z

1 +
(
[S] /J1Z

)n1Z +
(
[OVOL2] /J2Z

)n2Z

− kdZ

[Z] −
5∑
i=1

C
i
5 [ZR]

 −
5∑
i=1

kdZRi
C
i
5
[
ZRi

]
d [Z]

dt
= kZ

[Z] −
5∑
i=1

C
i
5
[
ZRi

] − kdZ [Z]

d [mir]

dt
= k0200 +

k200

1 + ([S] /J1200)n1200 + ([Z] /J2200)n2200

− kd200

[mir] −
5∑
i=1

iC
i
5
[
ZRi

]
− [TR]


−

5∑
i=1

(
1 − λi

)
kdZRi

C
i
5i
[
ZRi

]
−
(
1 − λTR

)
kdTR [TR]

d [ZR1]

dt
= Tk

K1

[mir] −
5∑
i=1

iC
i
5
[
ZRi

]
− [TR]


[Z] −

5∑
i=1

C
i
5
[
ZRi

] − [ZR1]


d [ZR2]

dt
= Tk

K2

[mir] −
5∑
i=1

iC
i
5
[
ZRi

]
− [TR]

 [ZR1] − [ZR2]


d [ZR3]

dt
= Tk

K3

[mir] −
5∑
i=1

iC
i
5
[
ZRi

]
− [TR]

 [ZR1] − [ZR3]


d [ZR4]

dt
= Tk

K4

[mir] −
5∑
i=1

iC
i
5
[
ZRi

]
− [TR]

 [ZR1] − [ZR4]


d [ZR5]

dt
= Tk

K5

[mir] −
5∑
i=1

iC
i
5
[
ZRi

]
− [TR]

 [ZR1] − [ZR5]


d [tgf]

dt
= ktgf − kdtgf ([tgf] − [TR]) − kdTR [TR]

d [TGF ]

dt
= k0TGF + kTGF ([tgf] − [TR]) − kdTGF [TGF ]

d [TR]

dt
= Tk

KTR
[mir] −

5∑
i=1

iC
i
5
[
ZRi

]
− [TR]

 ([tgf] − [TR]) − [TR]


d [Ecad]

dt
= k0E +

kE1

1 +
(
[S] /J1E

)n1E
+

kE2

1 +
(
[Z] /J2E

)n2E
− kdE [Ecad]

B = kV 1

(
[S] /J1V

)n1V

1 +
(
[S] /J1V

)n1V
+ kV 2

(
[Z] /J2V

)n2V

1 +
(
[Z] /J2V

)n2V

d [V im]

dt
= k0V +

B(
1 + [OVOL2] /J3V

) − kdV [V im]

d [OVOL2]

dt
= k00 + k0

1

1 + ([Z] /J0)n0
− kdO [OVOL2]

d [OVOL2]p

dt
= kOp [OVOL2] − kdOp [OVOL2]p

where

5∑
i=1

iC
i
5
[
ZRi

]
= 5 [ZR1] + 20 [ZR2] + +30 [ZR3] + 20 [ZR4] + 5 [ZR5] ,

5∑
i=1

C
i
5
[
ZRi

]
= 5 [ZR1] + 10 [ZR2] + 10 [ZR3] + 5 [ZR4] + [ZR5] ,

[TGF0] (t) =

{
1
2

t > 100

0 o.w.

The parameter values are given in Table 4.



Parameter Value Parameter Value Parameter Value Parameter Value

J1200 3 J1E 0.1 K2 1 k0O 0.35

J2200 0.2 J2E 0.3 K3 1 kO200 0.0002

J134 0.15 J1V 0.4 K4 1 kO34 0.001

J234 0.35 J2V 0.4 K5 1 kdS 0.09

JO 0.9 J3V 2 KTR 20 kdtgf 0.1

J0S 0.6 J1Z 3.5 KSR 100 kdZ 0.1

J1S 0.5 J2Z 0.9 TGF0 0 kdTGF 0.9

J2S 1.8 K1 1 Tk 1000 kdZ 1.66

k0S 0.0005 k0Z 0.003 λ1 0.5 k0TGF 1.1

n1200 3 n1S 2 λ2 0.5 k0E 5

n2200 2 n1E 2 λ3 0.5 k0V 5

n134 2 n2E 2 λ4 0.5 kE1 15

n234 2 n1V 2 λ5 0.5 kE2 5

nO 2 n2V 2 λSR 0.5 kV 1 2

n0S 2 n2Z 6 λTR 0.5 kV 2 5

kO 1.2 k200 0.02 k34 0.01 ktgf 0.05

kZ 0.06 kTGF 1.5 kS 16 kZ 16

kdZR1
0.5 kdZR2

0.5 kdZR3
0.5 kdZR4

0.5

kdZR5
0.5 kdO 1.0 kd200 0.035 kd34 0.035

kdSR 0.9 kdE 0.05 kdV 0.05 kOp 10
kdOp 10

TABLE 4. TABLE OF PARAMETER VALUES FOR THE EMT MODEL.

Parameter Value Parameter Value Parameter Value

σRAin ,σDNA,σRAout 0.1 ω 100 u 0.01
b 0.17 γ 3.0 d 0.1
α 10000 δ 0.0013 e 1
β0 1 η 0.0001 a 1
c 0.1 r 0.0001 ζ 0.02
ν 0.85 λ 0.85 D 250.46

TABLE 5. TABLE OF PARAMETER VALUES FOR THE RA SPDE MODEL.

3. Retinoic Acid SPDE Model

d [RAout] =
(
β(x) +D∆ [RAout] − b [RAout] + c

[
RAin

])
dt + σRAout

dW
out
t

d
[
RAin

]
=

(
b [RAout] + δ [BP ] [DNA] −

(
γ [BP ] + η +

α [DNA]

ω + [DNA]
− c

) [
RAin

])
dt

d [RABP ] =
(
γ [BP ]

[
RAin

]
+ λ [BP ] [DNA] − (δ + ν [RAR]) [RABP ]

)
dt

d [DNA] = (ν [RABP ] [RAR] − λ [BP ] [DNA]) dt + σDNA [DNA] dW
DNA
t

d [BP ] =
(
a − λ [BP ] [DNA] − γ [BP ]

[
RAin

]
+ (δ + ν [RAR]) [RABP ]

)
dt

+

(
−u [BP ] +

d [DNA]

e + [DNA]

)
dt

d [RAR] = (ζ − ν [RABP ] [RAR] + λ [BP ] [DNA] − r [RAR]) dt

where β(x) = β0H(x− 40) with H the Heaviside step
function and x = 40 is the edge of retinoic acid production
[1]. The space was chosen as [−100, 400] × [0, 100] with
∆x = ∆y = 5. The boundary conditions were no-flex on
every side except the right side which had leaky boundary
conditions with parameter kA = 0.002, though full no-flux
does not noticeably change the results. The parameter values
are given in Table 5.

All entries not listed are zero.

4. SOSRI
Coefficient Value Coefficient Value

A
(0)
2,1 -0.04199224421316468 α3 0.4736296532772559

A
(0)
3,1 2.842612915017106 α4 0.026404498125060714

A
(0)
3,2 -2.0527723684000727 c

(0)
2 -0.04199224421316468

A
(0)
4,1 4.338237071435815 c

(0)
3 0.7898405466170333

A
(0)
4,2 -2.8895936137439793 c

(0)
4 3.7504010171562823

A
(0)
4,3 2.3017575594644466 c

(1)
1 0

A
(1)
2,1 0.26204282091330466 c

(1)
2 0.26204282091330466

A
(1)
3,1 0.20903646383505375 c

(1)
3 0.05879875232001766

A
(1)
3,2 -0.1502377115150361 c

(1)
4 0.758661169101175

A
(1)
4,1 0.05836595312746999 β

(1)
1 -1.8453464565104432

A
(1)
4,2 0.6149440396332373 β

(1)
2 2.688764531100726

A
(1)
4,3 0.08535117634046772 β

(1)
3 -0.2523866501071323

B
(0)
2,1 -0.21641093549612528 β

(1)
4 0.40896857551684956

B
(0)
3,1 1.5336352863679572 β

(2)
1 0.4969658141589478

B
(0)
3,2 0.26066223492647056 β

(2)
2 -0.5771202869753592

B
(0)
4,1 -1.0536037558179159 β

(2)
3 -0.12919702470322217

B
(0)
4,2 1.7015284721089472 β

(2)
4 0.2093514975196336

B
(0)
4,3 -0.20725685784180017 β

(3)
1 2.8453464565104425

B
(1)
2,1 -0.5119011827621657 β

(3)
2 -2.688764531100725

B
(1)
3,1 2.67767339866713 β

(3)
3 0.2523866501071322

B
(1)
3,2 -4.9395031322250995 β

(3)
4 -0.40896857551684945

B
(1)
4,1 0.15580956238299215 β

(4)
1 0.11522663875443433

B
(1)
4,2 3.2361551006624674 β

(4)
2 -0.57877086147738

B
(1)
4,3 -1.4223118283355949 β

(4)
3 0.2857851028163886

α1 1.140099274172029 β
(4)
4 0.17775911990655704

α2 -0.6401334255743456

5. SOSRI2
Coefficient Value Coefficient Value

A
(0)
2,1 0.13804532298278663 α3 0.686995463807979

A
(0)
3,1 0.5818361298250374 α4 -0.2911544680711602

A
(0)
3,2 0.4181638701749618 c

(0)
2 0.13804532298278663

A
(0)
4,1 0.4670018408674211 c

(0)
3 1

A
(0)
4,2 0.8046204792187386 c

(0)
4 1

A
(0)
4,3 -0.27162232008616016 c

(1)
1 0

A
(1)
2,1 0.45605532163856893 c

(1)
2 0.45605532163856893

A
(1)
3,1 0.7555807846451692 c

(1)
3 1

A
(1)
3,2 0.24441921535482677 c

(1)
4 1

A
(1)
4,1 0.6981181143266059 β

(1)
1 -0.45315689727309133

A
(1)
4,2 0.3453277086024727 β

(1)
2 0.8330937231303951

A
(1)
4,3 -0.04344582292908241 β

(1)
3 0.3792843195533544

B
(0)
2,1 0.08852381537667678 β

(1)
4 0.24077885458934192

B
(0)
3,1 1.0317752458971061 β

(2)
1 -0.4994383733810986

B
(0)
3,2 0.4563552922077882 β

(2)
2 0.9181786186154077

B
(0)
4,1 1.73078280444124 β

(2)
3 -0.25613778661003145

B
(0)
4,2 -0.46089678470929774 β

(2)
4 -0.16260245862427797

B
(0)
4,3 -0.9637509618944188 β

(3)
1 1.4531568972730915

B
(1)
2,1 0.6753186815412179 β

(3)
2 -0.8330937231303933

B
(1)
3,1 -0.07452812525785148 β

(3)
3 -0.3792843195533583

B
(1)
3,2 -0.49783736486149366 β

(3)
4 -0.24077885458934023

B
(1)
4,1 -0.5591906709928903 β

(4)
1 -0.4976090683622265

B
(1)
4,2 0.022696571806569924 β

(4)
2 0.9148155835648892

B
(1)
4,3 -0.8984927888368557 β

(4)
3 -1.4102107084476505

α1 -0.15036858140642623 β
(4)
4 0.9930041932449877

α2 0.7545275856696072
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