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Abstract. In this paper we develop methods for analyzing the behavior of continuous dynamical systems near equilibrium
points. We begin with a thorough analysis of linear systems and show that the behavior of such systems is completely determined
by the eigenvalues of the matrix of coe�cients. We then introduce the Stable Manifold and Hartman-Grobman theorems as a
way to understand the dynamics of nonlinear systems near equilibrium points through a linearization of the system. The paper
ends by showing how these theorems have been used in an actual application to solve for the dynamics near equilibrium points
in climate models.
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CHAPTER 1

Introduction and the Linear Systems

Continuous dynamics is the study of the dynamics for systems de�ned by di�erential equations. These kinds of systems
are commonly seen in areas such as Biology, Physics, and Climate Modeling. This paper will build a basis for the study
of continuous dynamics with an introduction to the basic de�nitions, a study of the linear cases, and an introduction to
the main theorems for understanding nonlinear systems through a linearized version of the system: the Hartman-Grobman
theorem, and the Stable Manifold Theorem.

1.1. Basic De�nitions

To start, we will de�ne a system of di�erential equations.

Definition. For X =

 x1

...
xn

, a system of di�erential equations is

X ′ = F (t,X) =

 f1(t, x1, . . . , xn)
...

fn(t, x1, . . . , xn)

 .

However, this de�nition is too general for the purpose of this paper. Instead we will look at autonomous systems.

Definition. An autonomous system of di�erential equations is a system where every fi has no explicit t depen-
dence.

Note that if every fi has no explicit t dependence, F (t,X) = F (X). We will de�ne a solution to the system as follows:

Definition. A solution to the system, X(t), satis�es the equation

X ′(t) = F (X(t)).

This de�nition should make intuitive sense. It is says that the derivative of each xi in our solution must be the same as
if we plugged our solution xi(t) values into the fi equations. If we take a solution de�ne a starting point or initial value X0,
we then have the description of the dynamics of the object for all time. This is known as the �ow which we formally de�ne
as:

Definition. A function φ : R× R→ R is satisfying di�erential equation X ′ = AX if with the initial value X0 is called
the �ow. It is denoted by φ(t,X0) and its output is coordinates of the object at time t that started at X0.

We de�ne an equilibrium point as follows:

Definition. An equilibrium point, X0, is a vector s.t. F (X0) = 0.
Since we have an autonomous system, F (X0) = 0 at a time t′ means that the derivative of all of the system variables

must always be zero for any t ≥ t′. Thus in autonomous systems the object will stay at equilibrium points for the rest of
time.

1.2. Introduction to Linear Systems

We will develop an understanding dynamical systems by understanding the dynamics around equilibrium points. Let's
start by de�ning the di�erent types of behavior for systems around equilibrium points using the simplest systems of di�erential
equations: linear systems of di�erential equations.
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1.2. INTRODUCTION TO LINEAR SYSTEMS 5

Definition. A linear system is a system of di�erential equations where each fi = ai1x1 + . . .+ ainxn.
A more intuitive version of this statement is that every fi can be written as the linear combination of the variables. Note

that we can de�ne the matrix

A =

 a11 . . . a1n
...

...
an1 . . . ann


and thus write X ′ = AX. We will continue writing linear systems in this form since linear algebra can lead us to powerful
results using this formation. A useful concept is the exponential of a matrix. Recall from calculus

ex =

∞∑
k=0

xk

k!
.

This suggests the following de�nition:
Let A be an n× n matrix. We de�ne the exponential of a matrix A to be

exp(A) = eA =

∞∑
k=0

Ak

k!
.

A proof that this sum converges for all n × n matrices is outside the scope of this paper [2]. The exponential is useful
because it can be used to solve linear di�erential equations as seen in the following theorem:

Theorem. Let A be an n× n matrix. Then the unique solution of the initial value problem X ′ = AX with X(0) = X0

is X(t) = eAtX0.

The proof of this theorem is out the scope of this paper. Other results one can arrive at using the matrix formula involve
the existence and uniqueness of equilibrium:

Proposition. If detA 6= 0, then there exists a unique equilibrium point.

This theorem follows because an equilibrium point is a vector X0 where AX0 = 0. From linear algebra we know that
there is a unique solution to this system when detA 6= 0. Tools from linear algebra also gives us the following proposition:

Proposition. If detA = 0 then there exists a straight line of equilibrium points through the origin.

Also important is that the tools of linear algebra provide us with another way of computing the solutions to a linear
system with linearly independent eigenvectors:

Theorem. Suppose V1, . . . , Vn are linearly independent eigenvectors for a matrix A and λ1, . . . , λn are the respective

eigenvalues. Then the solution to the system X ′ = AX is X(t) = α1e
λ1tV1 + . . .+ αne

λntVn where α1, . . . , αn are constants.

To prove this, simply write the matrix A in its eigenbasis {V1, . . . , Vn} to obtain diagonalized matrix

A =

 λ1

. . .

λn

 .

Thus we can guess our solution to be

X(t) =

 α1e
λ1t

. . .

αne
λnt


as written in the eigenbasis for A. By taking the derivative of each equation xi(t) = αiλie

λitVi we receive

X ′(t) =

 α1λ1e
λ1t

. . .

αnλne
λnt

 = AX(t)

which completes our proof. This theorem is important because it gives the general solution to any linear system with linearly
independent eigenvectors. The following theorem shows any matrix with n distinct eigenvalues have independent eigenvectors:

Theorem. Independent Eigenvector Theorem. If A is an n× n matrix with n distinct eigenvalues, then any set of

n corresponding eigenvectors are independent.
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Assume there is some linearly dependent set of eigenvectors. Take the smallest subset of linearly dependent eigenvectors
and denote its size as j. WLOG, denote this dependent set as V1, . . . , Vj . Since no eigenvector can be the zero vector, j ≥ 2.
Being linearly dependent implies that there are constants ai s.t. at least one ai is not zero and

a1V1 + . . .+ ajVj = 0.

Assume WLOG aj 6= 0. Thus writing bi = − ai
aj

we can write the equation as

Vj = b1V1 + . . .+ bj−1Vj−1.

Since Vj 6= 0 we know that at least one bi is nonzero. We can multiply this equation by A as written in its eigenbasis
{V1, . . . , Vn} to �nd

λjVj = b1λ1V1 + . . .+ bj−1λj−1Vj−1

where λi is the eigenvalue associated with Vi. We can also add λj to the previous equation to get

λjVj = b1zjV1 + . . .+ bj−1zjVj

and then subtract this equation to the one just above to �nd

0 = b1(zj − z1)V1 + . . .+ bj−1(zj − zj−1)Vj−1

Thus we have found a set of j − 1 linearly dependent eigenvectors which gives a contradiction. Thus there is no linearly
dependent set of eigenvectors and the proof is complete.

Now we want to be able to say that �most� or �almost all� matrices have n distinct eigenvalues. To do so, we can establish
a concrete de�nition for what is meant by �most�: we want a subset U to be �most� of its containing set if every point in the
compliment of U can be approximated arbitrarily closely by points in U and no point in U can be approximated arbitrarily
closely by points in the compliment of U . Thus U would have the property of being open and dense in its containing set.
Noting L(Rn) is the set of n× n matrices, we de�ne

Definition. P is a generic property if the set of all matrices having property P is open and dense in the set L(Rn).

Thus we can intuitively think that a generic property is a property that �almost all� matrices have. This leads us to our
proposition:

Proposition. Let P be the property that a matrix has n distinct eigenvalues. P is a generic property.

The proof of this proposition is out the scope of this paper [1]. This result shows that we know the general solution to
�almost all� n× n matrices. In addition, any matrix with repeating eigenvalues can be approximated arbitrarily closely by a
matrix without repeating eigenvalues. Thus for the purposes of this paper we will only consider matrices without repeating
eigenvalues. Note that this proposition implies that any matrix with repeating eigenvalues can be solved using a perturbation
to a matrix without repeating eigenvalues to use the methods we describe.

1.3. Simple Planar Linear Systems

Planar linear systems are two-dimensional linear systems. Thus they can be written in the form:

x′ = ax+ by,

y′ = cx+ dy.

We will consider only such equations where the matrix A =

(
a b
c d

)
has two distinct eigenvalues. From the previous

section we know that the general solution to such equations is X(t) = α1e
λ1tV1 + α2e

λ2tV2 where V1, V2 are the eigenvectors
of A and λ1,λ2 are the respective eigenvalues. We will see that the solution to such a system is completely determined by
the eigenvalues and eigenvectors. We can understand the complete behavior of such systems by investigating the di�erent

possibilities for the eigenvalues and eigenvectors. To start, let's examine the cases where V1 = e1 =

(
1
0

)
and V2 = e2 =(

0
1

)
.
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1.3.1. Source. Let's begin by looking at the case where both eigenvalues are positive. This case is known as a source.
Notice that when λ > 0, as t → ∞, |αeλt| → ∞ for any α ∈ R. Also, the term with the eigenvalue of greater magnitude
grows faster. More concretely, if |λ1| > |λ2|, then λ1 > λ2 and thus

lim
t→∞

α2e
λ2t

α1eλ1t
= lim
t→∞

α2

α1
e(λ2−λ1)t = 0.

Thus when |λ1| > |λ2| we can say that when α1 6= 0

lim
t→∞

X(t) ≈ α1e
λ1tV1.

From this we can conclude

lim
t→∞

X(t) = sign(α1)∞

where

sign(x) =

{
1 if x > 0

−1 if x < 0
.

From these results we receive the general solution depicted in Figure 1.3.1. This picture is called a phase portrait of the
system. Representative �ows are depicted with arrows showing the direction that the solution would move during a forward
progression of time. Here we see all of the �ows as going away from the equilibrium point (the origin). As expected, for every
X0 ∈ R2, |φ(t,X0)| → ∞ as t → ∞. Notice that in this picture we depict λ1 > λ2 and thus when α1 is positive (the values
of the �ow have a positive x-coordinate), then X(t) approaches ∞ while when a2 is negative we have X(t) approach −∞.
Notice that the x and y axis depict cases where one of the αi values is 0 and thus the solution never leaves the respective
axis.

Figure 1.3.1. Source. The eigenvalue for the e1 has a greater magnitude.

1.3.2. Sink. Now take the case where both eigenvalues are negative. This case is known as a sink. Notice that when
λ < 0, as t→∞, αeλt → 0 for any α ∈ R. Thus

lim
t→∞

X(t) = 0.

Notice that the eigenvalue with the greater magnitude shrinks faster. Formally, if |λ1| > |λ2|, then λ1 < λ2 and thus

lim
t→∞

α2e
λ2t

α1eλ1t
= lim
t→∞

α2

α1
e(λ2−λ1)t = 0.

Thus when |λ1| > |λ2| we can say that when α2 6= 0

lim
t→∞

X(t) ≈ α2e
λ2tV2.

From these results we can receive the general solution depicted in Figure 1.3.2. All of the �ows going towards the origin as
expected. In the limit, most of the �ows seem to fall towards the origin from the y-axis. The only �ows that do not approach
the origin from the y-axis are those on the x-axis which correspond to points where α2 = 0.
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Figure 1.3.2. Sink. The eigenvalue for the e1 has a greater magnitude.

1.3.3. Saddle. We can couple the ideas from the previous two cases to understand the case known as the saddle. A
saddle is the case where one eigenvalue is positive and the other is negative. If we assume λ1 < 0 < λ2, we see that as t→∞,
α1e

λ1t → 0 and α2e
λ2t → sign(α2)∞. Putting these facts together we notice

lim
t→∞

X(t) ≈ α2e
λ2tV2

and thus when α2 6= 0

lim
t→∞

X(t) = sign(α2)∞.
An example of such a system is depicted in Figure 1.3.3. We see that in the limit all of the �ows go towards positive or

negative in�nity (respective of the sign of α2) and approach the y-axis. However, when α2 = 0 we have a solution which is
written as α1e

λ1t and thus heads towards the origin.

Figure 1.3.3. Saddle. The e1 basis has the negative eigenvalue

1.3.4. Center. There is a case with periodic orbits known as a center. A center is de�ned by a matrix A =

(
0 β
−β 0

)
where β 6= 0. Such a matrix gives rise to eigenvalues ±iβ. We solve for the eigenvector for λ = iβ by noticing(

−iβ β
−β −iβ

)(
x
y

)
=

(
0
0

)
which implies iβx = βy or V1 =

(
1
i

)
. Thus

X(t) = eiβt
(

1
i

)
.

By Euler's Formula
eiβt = cosβt+ i sinβt

and thus

X(t) =

(
cosβt+ i sinβt
i(cosβt+ i sinβt)

)
=

(
cosβt+ i sinβt
− sinβt+ i cosβt

)
.

If we write X(t) in its real and imaginary parts

X(t) = XRe(t) + iXIm(t)



1.4. GENERAL LINEAR BEHAVIOR 9

we see

X ′(t) = X ′Re(t) + iX ′Im(t) = AX(t) = AXRe(t) + iAXIm(t).

By equating the real parts and equating the imaginary parts we see both XRe(t) and XIm(t) are solutions. But also notice

XRe(0) =

(
1
0

)
, XIm(0) =

(
0
1

)
and thus the general solution is X(t) = α1XRe(t) + α2XIm(t). Notice that each solution is periodic with period 2π

β . Thus

the solution is depicted in Figure 1.3.4.

Figure 1.3.4. Center

1.3.5. Spiral Source/Sink. Our last simple case is a spiral. It is represented by the matrix A =

(
α β
−β α

)
where

α, β 6= 0. Such a matrix gives rise to eigenvalues α± iβ. Following the derivation of the center we arrive

X(t) = e(α+iβ)t

(
1
i

)
and thus receive the general solution

X(t) = α1e
αt

(
cosβt
− sinβt

)
+ α2e

αt

(
sinβt
cosβt

)
which is the same as the solution for the center except for the factor eαt. Notice that this implies that if α > 0 then as
t → ∞, X(t) → ∞ and likewise if α < 0 then as t → ∞, X(t) → ∞. Thus our periodic solution is multiplied by a factor
that expands or contracts space according to α leading to a spiral shape. We call the case where α > 0 a spiral source as
the solution spirals outward and the case where α < 0 is a spiral sink. Example solutions are depicted in Figure 1.3.5.

Figure 1.3.5. The left is a spiral source and the right is a spiral sink

1.4. General Linear Behavior

We can use our knowledge of the simple cases of planar linear dynamics to generalize to all linear cases. We will start by
describing the rest of the planar linear solutions and describe how one would generalize the analysis to higher dimensions.
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1.4.1. Linear Transformations and Coordinate Changes. First we wish to address the problem of matrices with
an eigenbasis other than {e1, e2}. To understand matrices whose eigenbasis is not {e1, e2}, note that we can always change
our coordinates to receive matrices whose eigenbasis are {e1, e2} in the new coordinates thus understand the system in the
new coordinates. Thus we de�ne:

Definition. A linear map or linear transformation is a function T : Rn → Rn of the form

T

(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Theorem. Suppose the matrix A has n real, distinct eigenvalues λ1, . . . , λn with associated eigenvectors V1, . . . , Vn. Let

T be the matrix whose columns are V1, . . . , Vn. Thus

T−1AT =

 λ1

. . .

λn

 .

This theorem shows that for every matrix with real eigenvalues we can �nd a coordinate change from {e1, e2} to the
eigenbasis of A {V1, V2} and thus understand any system with real eigenvalues through this linear transformation. Figure
1.4.1 provides an example of such a shifted sink. Notice that the analysis for a center and a spiral above did not rely on an
eigenbasis of {e1, e2} and thus this theorem will show that we understand the solutions for all planar linear systems. Note
that this also implies that the same idea will be able to be applied to higher dimensional systems as well.

Figure 1.4.1. Linear transformation of a sink to a new basis

The proof is as follows. By the construction of T , Tej = Vj for j = 1, . . . , n. From the Independent Eigenvector Theorem
we know the columns of T are linearly independent and thus detT 6= 0. Thus T−1 exists thus T−1Vj = ej . Therefore we see

(T−1AT )ej = T−1AVj = T−1(λjVj) = λjT
−1Vj = λjej

and thus {e1, . . . , en} is the eigenbasis for (T−1AT ) with eigenvalues λ1, . . . , λn proving the theorem.

1.4.2. Conjugacies of Hyperbolic Matrices. We will start by understanding the relationship between the dynamics
of all solutions whose eigenbasis is {e1, e2}. To do this we will establish a relationship between the long-term dynamics of
systems described above. Thus we will de�ne our relationship:

Definition. Suppose X ′ = AX and X ′ = BX have the respective �ows φA and φB . These two systems are topologi-
cally conjugate if there exists a homeomorphism h : Rn → Rnthat satis�es

φB(t, h(X0) = h(φA(t,X0)).

Thus notice that a topological conjugacy establishes a one-to-one, onto, continuous, and inverse continuous mapping
from �ows of X ′ = AX to �ows of X ′ = BX. Therefore we will say that A and B are dynamically equivalent if A is
topologically conjugate to B. De�ne the following term:

Definition. A matrix A is hyperbolic if none of its eigenvalues has real part 0. The system X ′ = AX is also called
hyperbolic.

Using this de�nition we can assert and prove our theorem:
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Theorem. Suppose that A1 and A2 are 2× 2 matrices and are both hyperbolic. Then the linear systems X ′ = AiX are

conjugate if and only if each matrix has the same number of eigenvalues with negative real part.

First we will establish that any two matrices which di�er by a linear transformation are topologically conjugate.

Lemma. Suppose X ′ = A1X and X ′ = A2X has the same eigenvalues λ1 and λ2. A1 is topologically conjugate to A2.

Assume WLOG A1 has the eigenbasis {e1, e2} and denote the eigenbasis of A2 as V1,V2.. Thus there exists a linear
transformation T from A1 to A2. We know from an earlier theorem that T maps e1 to V1 and e2 to V2. Thus let h(X0) = TX0

and write

X0 =

(
x0

y0

)
.

Thus we can write

X =

(
x
y

)
V1,V2

to be the vector as written in the V1, V2 basis we see

h(φA1
(t,X0)) = h(

(
x0e

λ1t

y0e
λ2t

)
) = T

(
x0e

λ1t

y0e
λ2t

)
=

(
x0e

λ1t

y0e
λ2t

)
V1,V2

= φA2
(

(
x0

y0

)
V1,V2

) = φA2
(t, h(X0)).

Therefore A1 is topologically conjugate to A2. Notice that this implies that any two matrices with the same eigenvalues are
topologically conjugate.

We also need a fact from linear algebra:

Proposition. Every matrix can be linear transformed into a matrix of the Jordan canonical form. These are the matrices

(
λ 0
0 µ

)
,

(
α β
−β α

)
,

(
λ 1
0 λ

)
.

Thus, given our lemma, we only need to prove the theorem for the cases where A1and A2are in one of the Jordan canonical
forms.

Case 1. Suppose both linear systems X ′ = AiX have two nonzero real eigenvalues λi and µi where the λi's have the same
sign and the µi's have the same sign. Assume WLOG that the eigenbasis for both matrices is {e1, e2}. Thus we
have matrices of the form (

λ 0
0 µ

)
.

Notice we can assume our matrices have the eigenbasis {e1, e2} because our lemma shows that A1 and A2 are
topologically conjugate to such a matrix. Thus we have the di�erential equations x′ = λix and y′ = λiy. De�ne

h1(x) =

{
x
λ2
λ1 if x ≥ 0

−|x|
λ2
λ1 if x < 0

,

h2(y) =

{
y
µ2
µ1 if y ≥ 0

−|y|
µ2
µ1 if y < 0

,

to construct H(x, y) = (h1(x), h2(y)). Notice that the reason we must use such a function h is that if we use

h1(x) = x
λ2
λ1 , we can have cases such as λ2 = 2 and λ1 = 1 where h is not injective. Also we have to require that

the eigenvalues have the same sign to ensure continuity. Thus if we look at the x coordinate we see that when
x ≥ 0,

h(φA1(t, x0)) = h(x0e
λ1t) = (x0e

λ1t)
λ2
λ1 = x

λ2
λ1
0 eλ2t = φA2(t, x

λ2
λ1
0 ) = φA2(t, h(x0)).

An almost identical computation shows the same is true when x < 0. We see the same computations hold for the
y coordinate. Thus A1 is topologically conjugate to A2.

Case 2. Suppose the linear system X ′ = AX has a matrix that takes the form(
α β
β α

)
.
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Assume WLOG α < 0. We wish to show that the the system is conjugate to X ′ = BX where(
−1 0
0 −1

)
.

Let τ = τ(X0) be the time such that |φA(τ,X0)| = 1, the time that the solution with the initial value X0 intersects
the unit circle S1. Notice that, given B has two eigenvalues of −1,

φB(t,X) = e−tX.

De�ne the conjugacy

H(X) = φB(−τ, φA(τ,X)))

and let H(~0) = ~0. To show this is the conjugacy we want, �rst notice

φ(t1 + t2, X) = φ(t1, φ(t2, X))

which implies

φA(τ − s, φA(s,X0)) = φA(τ,X0) ∈ S1

and thus

τ(φA(s,X0)) = τ − s.
Therefore

H(φA(s,X0)) = φB(−τ + s, φA(τ − s, φA(s,X0))),

= φB(s, φB(−τ, φA(, τ,X0))),

= φB(s,H(X0)).

In order for this to be a conjugacy we must also show H is a homeomorphism. We de�ne the function

G(X) = φA(−τ1, φB(τ1, X))

and set G(~0) = ~0 where τ1 = τ1(X0) is the time such that |φB(τ1, X0)| = 1. It is clear from the construction that
G−1 = H and thus H is bijective. Notice that φB(t,X) = e−tX which implies τ1 = log r where r2 = x2 +y2. Thus

φB(τ1, X) = φB(log r,X) = e− log rX =
1

r
X

which means we can write G equivalently as

φA(− log r,
1

r
X)

and since �ows are continuous, we know H−1 is continuous at all points except X0 = ~0. To show G is continuous
at the origin, take X0 close to the origin. Recall that as r → 0, − log r → ∞. Thus φA(− log r, 1

rX) ≈ ~0. Since
1
rX ∈ S

1, the �lled unit circle is mapped close to the origin and thus G is continuous at the origin. Now we must
show H is continuous. Since �ows are continuous, we simply need to show τ(X) is continuous. Notice

∂

∂t
|φA(t,X)| = ∂

∂t

√
x(t)2 + y(t)2 =

x(t)x′(t) + y(t)y′(t)

|φA(t,X)|
and when t = τ(X) we know that the vector �eld (x′(t), y′(t)) points inside of S1 and thus (x′(t), y′(t)) 6= (0, 0)
which implies

∂

∂t
|φA(t,X)| 6= 0

at (τ(x, y), x, y). Thus we can apply the implicit function theorem to solve for a di�erentiable function for τ
which implies τ is di�erentiable and thus τ is continuous giving us continuity in H [6]. The argument that H is
continuous at (0, 0) closely follows the argument that H−1 is continuous at (0, 0). Thus H is a homeomorphism
and thus a conjugacy between X ′ = AX and X ′ = BX.
Notice that the only part of this case that requires α < 0 is part proving G is continuous at (0, 0). However, if
α > 0 then we can de�ne the conjugacy as

H(X) = φB(τ, φA(−τ,X)))

and the proof will follow.
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Case 3. Suppose the linear system X ′ = AX has a matrix of the form

A =

(
λ 1
0 λ

)
.

Let

T =

(
1 0
0 ε

)
where ε > 0 su�ciently small. Thus

T−1AT =

(
λ ε
0 λ

)
and thus we can continue to prove our theorem using the argument in Case 2.

1.4.3. Higher Dimensional Systems. All of the theorems and de�nitions above generalize to higher dimensions. The
solution type is completely determined by the eigenvalues of the matrix and their behavior on the eigenvector is the same as
the analysis above. The only di�erence is there are more axes to analyze. An example is shown in Figure 1.4.2. This �gure
is known as a spiral saddle. The eigenvectors are e1, e2, and e3. The eigenvalues for the e1 and e2 eigenvectors are α ± iβ
where α < 0 as seen by the spiral sink in the xy-plane. The eigenvalue for the e3 eigenvector is positive which shows the
repulsion of the solution on the e3 axis.

Figure 1.4.2. Spiral Saddle

Also note that it can be proved for the hyperbolic n×n matrices A1 and A2, the linear systems X ′ = AiX are conjugate
if and only if each matrix has the same number of eigenvalues with negative real part.



CHAPTER 2

Nonlinear Systems

Nonlinear systems exhibit more complexity than linear systems. In general, there is no guarantee that there in the
existence and uniqueness of an equilibrium point. The solutions to a system may not only be linear combinations of elements
who themselves are solutions. Lastly, these systems are not in a form that allows us to place the coe�cients in a matrix and
use the tools from linear algebra to arrive at theorems. Thus in many cases nonlinear systems are much harder to analyze.

However, there are tools for understanding nonlinear systems. The goal of this chapter will be to introduce some the
most important tools for understanding nonlinear systems by understanding related linear systems. The main theorems of
this topic are the the Stable Manifold Theorem and the Hartman-Grobman Theorem.

2.1. The Stable Manifold Theorem

The Stable Manifold Theorem in its intuitive form states that the set of points that an equilibrium point attracts is well
approximated by a linear system near the equilibrium point (and the same holds for the set of points repelled) [4, 7]. This
linearization of a system is what is known as the total derivative. The total derivative �nds a linear tangent hypersurface
near the equilibrium point which can serve as a good approximation for some arbitrarily small neighborhood around the
equilibrium point. So to start, we de�ne the total derivative as follows:

Definition. The function F : Rn → Rn is di�erentiable atX0 ∈ Rn if there is a linear transformationDF (X0) ∈ L(Rn)
that satis�es

lim
|H|→0

|F (X0 +H)− F (X0)−DF (X0)H|
|H|

= 0.

The linear transformation DF (X0) is called the total derivative of F at X0. The linear system of di�erential equations

X ′ = DF (X0)X

is called the linearized system near X0. If DF (X0) is a hyperbolic matrix, then we say X0 is a hyperbolic equilibrium
point.

By using this de�nition of a derivative in conjunction with Taylor's Theorem we see

F (X) = DF (~0)X +
1

2
D2F (~0)(X,X) + . . .

which implies DF (~0) is a good �rst approximation to F (X) near X = ~0. Given these de�nition, we can prove the following
theorem:

Theorem. If F : Rn → Rn is di�erentiable at X0, then the partial derivative ∂fi
∂xj

, i, j = 1, . . . , n all exist at X0 and for

all x ∈ Rn,

DF (X0)X =

n∑
j=1

∂F

∂xj
(x0)xj

and thus if F is a di�erentiable function, the derivative DF is given by the n× n Jacobian matrix

Df =

(
∂fi
∂xj

)
The proof of this theorem is out the scope of the paper. For the purposes of this paper, we will constrain our focus

to nonlinear systems which are continuously di�erentiable. These are systems which have a continuous derivative and are
denoted by the set C1. We denote that a function F is continuously di�erentiable on a subset E of Rn as C1(E). We can
prove the following about the existence and uniqueness of equilibrium for C1 functions:

14
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Theorem. Consider the initial value problem

X ′ = F (X), X(0) = X0

where X0 ∈ Rn. Suppose that F : Rn → Rn is C1. Then there exists a unique solution to this di�erential equation satisfying

the initial condition X(t0) = X0.

The proof of this theorem is out the scope of this paper. We also need the following de�nitions:
The Stable Manifold of an equilibrium point X0 is

Es = {X ∈ Rn : lim
t→∞

φ(t,X) = X0}.

and the Unstable Manifold of X0 is

EU = {X ∈ Rn : lim
t→−∞

φ(t,X) = X0}.

An intuitive way to understand these de�nitions is that the stable manifold of an equilibrium point is the set of all of the
points who are attracted to the equilibrium while the unstable manifold is the set of all points which are repelled from the
equilibrium. These manifolds in the linear case were simple: the space spanned by the eigenvectors with positive real part
eigenvalues were all repelled and thus formed the unstable manifold of the equilibrium point. The space spanned by the
eigenvectors with negative real part eigenvalues were all attracted and thus formed the stable manifold of the equilibrium
point.

What we wish to show is that the linearized system near the equilibrium gives a good approximation to the stable
and unstable manifolds. Just as in calculus, the �good approximation� to the hypersurface at a given point is the tangent
hypersurface. Thus what we wish to show is that the stable and unstable manifolds for the linearized version are tangent to
the manifolds of the nonlinear version at the equilibrium point.

Theorem. The Stable Manifold Theorem. Let E be an open subset of Rn containing the origin, let F ∈ C1 and let

φ(t,X) be the �ow of the nonlinear system X ′ = F (X). Let F (~0) = ~0 and let DF (~0) have k eigenvalues with negative real

part and n− k eigenvalues with positive real part. Then there exists a k-dimensional di�erentiable manifold S tangent to the

stable manifold Es of the linearized system at ~0 such that for all t ≥ 0, φ(t, S) ⊂ S and for all X0 ∈ S,

lim
t→∞

φ(t,X0) = ~0.

Also, there exists an n−k dimensional di�erentiable manifold U tangent to the unstable manifold EU of the linearized system

at ~0 such that for all t ≤ 0 , φ(t, U) ⊂ U and for all X0 ∈ U ,

lim
t→−∞

φ(t,X0) = ~0.

Note that we can always change the coordinates of any problem such that the equilibrium point is at the origin as required
by this statement of the theorem. Given that F (~0) = ~0, we can write

X ′ = AX + F̄ (X)

where A = DF (~0), G(X) = F (X) − AX, F ∈ C1(E), DF (~0) = ~0. Because our function is di�erentiable at X0, for every
ε > 0, there is a δ > 0 such that |X − Y | ≤ δ implies

|F (X)− F (Y )| ≤ ε|X − Y |.

One could think of this as following from our de�nition of the derivative as it requires the multidimensional slope to limit to
~0 (though this can be proven through a more rigorous method). From linear algebra we know that can always �nd a linear
transformation L to write A in the form

B = L−1AL =

(
P 0
0 Q

)
where the eigenvalues λ1, . . . , λk of the k × k matrix P have negative real part and the eigenvalues λk+1, . . . , λn of the
(n− k)× (n− k) matrix Q have positive real part. Choose α > 0 su�ciently small such that for j = 1, . . . , k,

Re(λj) < −α < 0

and thus by letting Y = L−1X we can write the system in the form

Y ′ = BY +G(Y )



2.1. THE STABLE MANIFOLD THEOREM 16

where G(y) = L−1F̄ (LY ) ∈ C1(Ẽ) where Ẽ = L−1E. Let

U(t) =

(
ePt 0
0 0

)
, V (t) =

(
0 0
0 eQt

)
.

Thus U ′ = BU and V ′ = BV which in turn gives

eBt = U(t) + V (t).

Since we have chosen a su�ciently small −α > Re(λj) for all of the negative eigenvalues, we can choose a σ > 0 su�ciently
small and a K > 0 su�ciently large such that

||U(t)|| ≤ Ke−(α+σ)t

for all t ≥ 0 and

||V (t)|| ≤ Keσt

for all t ≤ 0. Now consider the equation

U(t, a) = U(t)a+

ˆ t

0

U(t− s)G(U, (s, a)))ds−
ˆ ∞
t

V (t− s)G(U(s, a))ds

Notice that U(t, a) is the solution to Y ′ = BY +G(Y ). This integral can be solved using the method of successive approxi-
mation to show

U1(t, a) = 0

|Uj(t, a)− Uj−1| ≤
K|a|e−αt

2j−1

where

lim
j→∞

Uj(t, a) = U(t, a)

which gives that

|U(t, a)| ≤ 2K|a|e−αt

when |a| is su�ciently small. By looking at the integral equation we see that the last n − k components of a do not enter
the computation and thus can be taken to be zero. Thus the components of U(t, a) must satisfy the initial conditions

(U(t, a))j = aj for j = 1, . . . , k.

We then de�ne the function

ψ(ψk+1(a), . . . , ψn(a))

where

ψj(a) = (U(0, (a1, . . . , ak, 0, . . . , 0))j .

From here it can be shown that by setting Y (~0) = U(0, a),

Y (t) = U(t, a)

and that

∂ψj
∂yi

(~0) = ~0

and thus the di�erentiable manifold S is tangent to the stable subspace Es = {y ∈ Rn : y1 = . . . = yk = 0} [7]. A similar
proof shows the analogous conclusion for the unstable subspace.
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2.2. The Hartman-Grobman Theorem

The Hartman-Grobman Theorem, also known as the Linearization theorem, develops the similarity between the nonlinear
system and the linearized version near an equilibrium point by establishing a topological conjugacy. From the Stable Manifold
Theorem we know that the stable and unstable manifolds are well approximated by the linearized system near the equilibrium
point. The Hartman-Grobman Theorem goes the next step to establish that the long-term behavior of the two systems near
the equilibrium point are similar as denoted by a topological conjugacy.

Theorem. Take X ∈ Rn and consider the nonlinear system X ′ = F (X) with the �ow φ(t,X) and the linear system

X ′ = AX where A = DF (X∗) and X∗ is a hyperbolic �xed point. Assume we have translated X∗ such that X∗ = ~0.

Let f be C1 on some E ⊂ Rn with ~0 ∈ E. Let I0 ⊂ R, U ⊂ Rn, and V ⊂ Rn such that U , V , and I0 all contain the

origin. Then there exists a homeomorphism H : U → V such that, for all ~X0 ∈ U and all t ∈ I0,

H(φ(t,X0)) = eAtH(X0)

and thus X ′ = F (X) is topologically conjugate to X ′ = AX.

The proof is outside the scope of this paper. However the proof follows a structure similar to the Stable Manifold Theorem
proof [9, 2]. One starts by supposing the matrix can be written in the form(

P 0
0 Q

)
which separates the positive real eigenvalues in the matrix Q from the negative real eigenvalues in the matrix P . From
here one establishes a su�ciently small neighborhood around 0 and develops the homeomorphism H using the method of
successive approximations. Then one shows that the equation

H(φ(t,X0)) = eAtH(X0)

is su�ciently satis�ed in the neighborhood around X0 which completes the proof.

2.3. Application of the Hartman-Grobman Theorem

The Hartman-Grobman Theorem can easily be applied to nonlinear systems in order to understand the behavior of
the solution near equilibrium points. An example comes from a paper written by Dr. Richard McGehee and Dr. Esther
Widiasih [5]. These researchers develop a nonlinear dynamical system to describe the ice-albedo feedback system. After
much simpli�cation they notice that the system can be written as

η̇ = ε(w +
Qs2(1− α0)

B + C
p2(η)− Tc),

ẇ =
1

R
(BΦ0(η)−Bw − εΩ(w +

Qs2(1− α0)

B + C
p2(η)− Tc.

Thus the equilibrium points can be found by solving

h(η) = Ψ0(η) +
Qs2(1− α0)

B + C
p2(η)− Tc = 0.

Figure 2.3.1. The graph of h(η)
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From Figure 2.3.1 we can see that h(η) has two such solutions and thus there are two equilibrium points, η1 ≈ .25 and
η2 ≈ .95. Thus to understand the behavior near the equilibrium points, we can �nd the Jacobian matrix for the system at
the equilibrium points (

∂η̇
∂η

∂η̇
∂w

∂ẇ
∂η

∂ẇ
∂w

)
=

(
εQs2(1−α0)

B+C p′2(ηi) ε
B
RΦ′0(ηi)− εΩ

R
Qs2(1−α0)
B+C p′2(ηi) −BR

)
which has eigenvalues approximated by −BR andεh′(ηi). Thus for η = .25, the Jacobian has one positive eigenvalue and one
negative eigenvalue making η1 a saddle point. For η = .95, the Jacobian has two negative eigenvalues making η2 a sink.



CHAPTER 3

Conclusion

The purpose of this paper was to develop methods for understanding the dynamics of continuous dynamical systems using
linearization methods. In this paper we have developed a thorough understanding of the possible solutions to linear systems
of di�erential equations. Our method involved solving for the eigenvalues of the matrix of coe�cients which completely
determined the long-term behavior. We then extended this method to nonlinear systems through the Stable Manifold and
the Hartman-Grobman theorems. These theorems show how a nonlinear system can be analyzed near the equilibrium points
through a linearized form of the system known as the Jacobian. With this information we were able to understand how
climate researchers were able to conclude that certain equilibrium points in their nonlinear model were saddles and sinks.

There were portions of this paper which could have been exanded on, but due to the lenghth of the paper were not delved
in to. Most were theorems of linear algebra such as the fact that the summation that de�nes the exponential of a matrix
converges for all n × n matrices. For rigorous treatment of such topics, please consult the books Di�erential Equations,

Dynamical Systems, and in Introduction to Chaos by Hirsch et. all and Di�erential Equations and Dynamical Systems by
Perko Lawrence [1, 2].
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